Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Cyanobenzyl)benzamide

Yi-Li Tong,^a Li-Qin Guo,^b Hai-Jun Ma,^b Wei Chen^a and Hong-Jun Zhu^a*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bJiangsu Pesticide Research Institute Co. Ltd, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 9 October 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.075; wR factor = 0.186; data-to-parameter ratio = 13.7.

The title compound, $C_{15}H_{12}N_2O$, is a derivative of 4-(aminomethyl)benzonitrile, an important pestcide intermediate. In the crystal structure, molecules are linked *via* intermolecular $N-H\cdots O$ hydrogen bonds, forming infinite chains.

Related literature

For general background, see: Blaschke *et al.* (1976); Gesing (1989). For the synthetic procedure, see: Guo *et al.* (2008). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{12}N_2O\\ M_r = 236.27\\ \text{Monoclinic, } P2_1/n\\ a = 5.864 \ (1) \ \text{\AA}\\ b = 27.164 \ (5) \ \text{\AA}\\ c = 7.839 \ (2) \ \text{\AA}\\ \beta = 91.09 \ (3)^\circ \end{array}$

```
V = 1248.4 (4) Å^{3}

Z = 4

Mo K\alpha radiation

\(\mu = 0.08 \text{ mm}^{-1}\)

T = 298 (2) K

0.30 \times 0.20 \times 0.10 \text{ mm}\)
```

Data collection

Enraf–Nonius CAD-4	2233 independent reflections
diffractometer	1461 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.041$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.976, T_{\max} = 0.992$	every 200 reflections
2450 measured reflections	intensity decay: none
D (
Refinement	

163 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

		$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O^{i}$ 0.86 1.99 2.830 (4)	166	$N2-H2A\cdots O^{i}$	0.86	1.99	2.830 (4)	166

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Dr Shan Liu, Nanjing University of Technology, for his useful suggestions and guidance, and thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2085).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blaschke, G., Joergens, R. & Claassen, G. (1976). Arch. Pharm. 309, 258–65. Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
- Gesing, E. (1989). Bayer AG, Germany. DE Patent No. 3 727 126.
- Guo, L. Q., Ma, H. J., Ni, J. P., Xu, S. C., Liu, L., Wan, Q. & Wang, X. J. (2008). Agrochem. Res. Appl. 12, 15–18.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o2271 [doi:10.1107/81600536808035137]

N-(4-Cyanobenzyl)benzamide

Y.-L. Tong, L.-Q. Guo, H.-J. Ma, W. Chen and H.-J. Zhu

Comment

N-(4-Cyanobenzyl)benzamide is a derivative of 4-(aminomethyl)benzontrile (Gesing, 1989), which is an important in the synthesis of pestcides as well as of some drugs (Blaschke *et al.*, 1976).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

In the crystal structure, molecules are linked together to form infinite chains *via* intermolecular N—H···O hydrogen bonds (Fig. 2).

Experimental

The title compound, (I) was prepared by a method reported by Guo et al. (2008).

Crystals were obtained by dissolving (I) (0.8 g, 3.4 mmol) in dichloromethane (20 ml) and slowly evaporating the solvent slowly at room temperature for about 5 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/N)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.

N-(4-Cyanobenzyl)benzamide

Crystal data C₁₅H₁₂N₂O

 $F_{000} = 496$

$M_r = 236.27$	$D_{\rm x} = 1.257 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 5.864 (1) Å	$\theta = 10 - 13^{\circ}$
<i>b</i> = 27.164 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 7.839 (2) Å	T = 298 (2) K
$\beta = 91.09 \ (3)^{\circ}$	Block, colorless
$V = 1248.4 (4) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.041$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.5^{\circ}$
T = 298(2) K	$h = -7 \rightarrow 7$
$\omega/2\theta$ scans	$k = 0 \rightarrow 32$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 9$
$T_{\min} = 0.976, \ T_{\max} = 0.992$	3 standard reflections
2450 measured reflections	every 200 reflections
2233 independent reflections	intensity decay: none
1461 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.075$	H-atom parameters constrained
$wR(F^2) = 0.186$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 2P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2233 reflections	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
163 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

-- . .--

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
0	0.3309 (5)	0.24546 (11)	0.3711 (3)	0.0728 (9)
C1	0.5980 (7)	0.02472 (18)	0.7639 (6)	0.0648 (11)
N1	0.7125 (8)	-0.00565 (17)	0.8071 (6)	0.0976 (15)
N2	0.0883 (4)	0.23194 (10)	0.5795 (3)	0.0396 (7)
H2A	0.0269	0.2426	0.6711	0.048*
C2	0.4555 (6)	0.06509 (14)	0.7054 (4)	0.0465 (9)
C3	0.5228 (6)	0.11328 (14)	0.7289 (4)	0.0473 (9)
H3A	0.6602	0.1201	0.7852	0.057*
C4	0.3894 (5)	0.15128 (13)	0.6701 (4)	0.0422 (8)
H4A	0.4383	0.1836	0.6850	0.051*
C5	0.1830 (5)	0.14198 (12)	0.5889 (4)	0.0354 (8)
C6	0.1169 (6)	0.09393 (14)	0.5685 (5)	0.0514 (9)
H6A	-0.0224	0.0873	0.5146	0.062*
C7	0.2468 (7)	0.05557 (15)	0.6239 (5)	0.0571 (10)
H7A	0.1971	0.0234	0.6077	0.069*
C8	0.0315 (5)	0.18301 (13)	0.5198 (4)	0.0431 (8)
H8A	0.0384	0.1828	0.3963	0.052*
H8B	-0.1247	0.1759	0.5501	0.052*
C9	0.2321 (5)	0.26091 (13)	0.4974 (4)	0.0385 (8)
C10	0.2683 (5)	0.31165 (12)	0.5607 (3)	0.0332 (7)
C11	0.1042 (5)	0.33738 (13)	0.6512 (4)	0.0407 (8)
H11A	-0.0302	0.3217	0.6809	0.049*
C12	0.1384 (6)	0.38530 (14)	0.6968 (5)	0.0528 (10)
H12A	0.0297	0.4020	0.7596	0.063*
C13	0.3361 (7)	0.40892 (15)	0.6489 (5)	0.0550 (10)
H13A	0.3575	0.4420	0.6745	0.066*
C14	0.5014 (6)	0.38324 (16)	0.5631 (5)	0.0542 (10)
H14A	0.6378	0.3986	0.5362	0.065*
C15	0.4657 (5)	0.33607 (14)	0.5182 (4)	0.0447 (9)
H15A	0.5765	0.3195	0.4572	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Alomic displacement parameters (A	splacement parameters (A ⁻)
-----------------------------------	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.094 (2)	0.0745 (19)	0.0522 (15)	-0.0141 (16)	0.0520 (15)	-0.0124 (14)
C1	0.052 (3)	0.075 (3)	0.067 (3)	0.006 (2)	-0.011 (2)	-0.005 (2)
N1	0.087 (3)	0.079 (3)	0.125 (4)	0.026 (2)	-0.026 (3)	0.003 (3)
N2	0.0334 (15)	0.0591 (18)	0.0267 (13)	0.0019 (13)	0.0090 (11)	-0.0020 (12)
C2	0.044 (2)	0.055 (2)	0.0412 (19)	0.0021 (17)	0.0006 (16)	-0.0035 (16)

supplementary materials

C3	0.0340 (19)	0.067 (2)	0.0407 (19)	-0.0052 (17)	-0.0050 (15)	-0.0033 (17)
C4	0.0356 (18)	0.053 (2)	0.0385 (18)	-0.0108 (16)	0.0028 (14)	-0.0059 (15)
C5	0.0255 (16)	0.055 (2)	0.0256 (15)	0.0002 (14)	0.0042 (12)	-0.0041 (13)
C6	0.038 (2)	0.063 (2)	0.053 (2)	-0.0110 (18)	-0.0145 (17)	-0.0085 (18)
C7	0.056 (2)	0.050 (2)	0.064 (2)	-0.0027 (19)	-0.013 (2)	-0.0099 (19)
C8	0.0338 (18)	0.060 (2)	0.0356 (17)	-0.0021 (16)	-0.0016 (14)	0.0004 (15)
C9	0.0300 (17)	0.061 (2)	0.0250 (15)	0.0000 (15)	0.0120 (13)	0.0029 (14)
C10	0.0218 (15)	0.057 (2)	0.0206 (14)	0.0046 (14)	-0.0001 (12)	0.0082 (13)
C11	0.0242 (16)	0.061 (2)	0.0365 (17)	0.0016 (15)	0.0004 (13)	0.0025 (15)
C12	0.052 (2)	0.057 (2)	0.049 (2)	0.0076 (19)	-0.0028 (17)	-0.0064 (18)
C13	0.057 (2)	0.058 (2)	0.049 (2)	-0.011 (2)	-0.0165 (19)	0.0015 (18)
C14	0.037 (2)	0.076 (3)	0.049 (2)	-0.0154 (19)	-0.0079 (17)	0.0077 (19)
C15	0.0305 (18)	0.070 (3)	0.0343 (17)	0.0034 (17)	0.0040 (14)	0.0054 (16)

Geometric parameters (Å, °)

О—С9	1.230 (4)	C7—H7A	0.9300
C1—N1	1.113 (5)	C8—H8A	0.9700
C1—C2	1.448 (6)	C8—H8B	0.9700
N2—C9	1.329 (4)	C9—C10	1.479 (5)
N2—C8	1.446 (4)	C10—C15	1.380 (4)
N2—H2A	0.8600	C10—C11	1.394 (4)
C2—C3	1.379 (5)	C11—C12	1.364 (5)
C2—C7	1.394 (5)	C11—H11A	0.9300
C3—C4	1.370 (5)	C12—C13	1.383 (5)
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.380 (4)	C13—C14	1.380 (5)
C4—H4A	0.9300	C13—H13A	0.9300
C5—C6	1.370 (5)	C14—C15	1.344 (5)
C5—C8	1.519 (5)	C14—H14A	0.9300
С6—С7	1.357 (5)	C15—H15A	0.9300
С6—Н6А	0.9300		
N1—C1—C2	178.1 (5)	N2—C8—H8B	108.4
C9—N2—C8	122.1 (3)	С5—С8—Н8В	108.4
C9—N2—H2A	118.9	H8A—C8—H8B	107.5
C8—N2—H2A	118.9	O—C9—N2	120.0 (3)
C3—C2—C7	118.9 (3)	O-C9-C10	121.4 (3)
C3—C2—C1	121.0 (3)	N2—C9—C10	118.5 (3)
C7—C2—C1	120.1 (3)	C15—C10—C11	118.2 (3)
C4—C3—C2	120.7 (3)	C15—C10—C9	118.9 (3)
С4—С3—Н3А	119.7	C11—C10—C9	122.8 (3)
С2—С3—Н3А	119.7	C12—C11—C10	120.8 (3)
C3—C4—C5	120.5 (3)	C12—C11—H11A	119.6
С3—С4—Н4А	119.8	C10—C11—H11A	119.6
C5—C4—H4A	119.8	C11—C12—C13	119.4 (4)
C6—C5—C4	118.2 (3)	C11—C12—H12A	120.3
C6—C5—C8	119.7 (3)	C13—C12—H12A	120.3
C4—C5—C8	122.1 (3)	C14—C13—C12	119.9 (4)
C7—C6—C5	122.6 (3)	C14—C13—H13A	120.1

С7—С6—Н6А	118.7	C12—C13—H13A	120.1
С5—С6—Н6А	118.7	C15—C14—C13	120.1 (3)
C6—C7—C2	119.1 (4)	C15—C14—H14A	119.9
С6—С7—Н7А	120.4	C13—C14—H14A	119.9
С2—С7—Н7А	120.4	C14—C15—C10	121.5 (3)
N2—C8—C5	115.5 (3)	C14—C15—H15A	119.3
N2—C8—H8A	108.4	C10-C15-H15A	119.3
С5—С8—Н8А	108.4		
C7—C2—C3—C4	-1.3 (5)	C8—N2—C9—C10	175.9 (3)
C1—C2—C3—C4	178.7 (3)	O—C9—C10—C15	-22.3 (5)
C2—C3—C4—C5	1.2 (5)	N2-C9-C10-C15	158.1 (3)
C3—C4—C5—C6	-0.3 (5)	O-C9-C10-C11	152.8 (3)
C3—C4—C5—C8	-179.2 (3)	N2-C9-C10-C11	-26.8 (4)
C4—C5—C6—C7	-0.4 (5)	C15-C10-C11-C12	-0.2 (5)
C8—C5—C6—C7	178.5 (3)	C9-C10-C11-C12	-175.4 (3)
C5—C6—C7—C2	0.2 (6)	C10-C11-C12-C13	1.6 (5)
C3—C2—C7—C6	0.7 (6)	C11-C12-C13-C14	-3.2 (5)
C1—C2—C7—C6	-179.3 (4)	C12-C13-C14-C15	3.4 (5)
C9—N2—C8—C5	90.5 (4)	C13-C14-C15-C10	-2.1 (5)
C6—C5—C8—N2	166.8 (3)	C11-C10-C15-C14	0.4 (5)
C4—C5—C8—N2	-14.4 (4)	C9-C10-C15-C14	175.8 (3)
C8—N2—C9—O	-3.7 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2A····O ⁱ	0.86	1.99	2.830 (4)	166
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z+1/2$.				

Fig. 1

